Mansoura Bulletin Vol. 10, No. 1, June 1905 C. 1
THE SETTLEMENT OF A HIGH RISE TOVER ON PIIES
AT ZAMALEK, CAIPO
BY

ABSTRACT:

This article gives the result of the settlenent observations for a high rise tower at Zamalek, Cairo. Egypt. Maximum settlement of 80.38 mm and minimum 28.43 mm were recorded and cracks of some bricks walls were observed. The behaviour of tower was analysed based on Dahloul. Vesic, Berezantsev and Skempton, and important conclusions were drawn.

INTRODUCTION:

A high rise tower consisted of three levels was constructed at Zamalek, Cairo. The levels were the central part of 34 floors. the intermedtat part of 17 floors and the outer part of 5 floors. The whole parts were connected together without joints of any kind and constructed in the same time. A bored piled foundation of temporary casing was used, diameters of piles were 65 cm , and 85 cr , resting on the medium sandy layer at 13 to 15 m below surface. Figs. (1,2) show the building, foundations and the general profile of sail.

Literature Review:

A thorough review of settlement of pile groups in sand is given else where (λ). There is at present (1983) no closed form rational theory of settlement of pile groups In sand. it is recommended in the calculation of the settlement of pile groups in sand to use the methods proposed by Skempt on (1953). Berezantsev (1961), Vesic (1975) and Bahloul (1963).

Settlement Calculations:
The predicted settlement of different pile groups of the tower was calculated from the results of the load tests on pile nr. 1 and pile nr. 40 using the 4 recommended methods (Skempton, Berezantsev, Vesic and Bahloul).
Calculations are enclosed at the appendix.
Predicted max. sattlement under 34 f . part 89.9 mm .
Predictedmin. settlement under 5 f . part $15,46 \mathrm{~mm}$.
Predicted intermediate" " 17 f. part 33.73 mm .
Settlement Observations:
A program of settlement recording was done and included 28 points, on the column at garga under all the structure.

```
C. 2 M. M. BAHLGUL
```

The first reading was at April 4; 1980 and then every 2 weeks. Due to constructions process the nr. of correct points became 10 points only at DEC, 1983. Some readings are shown in Fig*(3).

Results of Sattlenent Observations at Dec. 1903 ;
The meximum settlement was under the part 34 f . and reached $80,38 \mathrm{~mm}$ at col, 50 f ., the mean settlement under the part 34 f . was $78,24 \mathrm{~mm}$. The minimum settlement was under the small part of 5 f . part and reached 28.43 mm .

The intermedicata settlement was under the 17 f . part and was 51.95 mm . Maximum differential settlement was between the 34 f . and 5 f , and when it reached 50.46 mm at April 1981 caused craking and then crushing of some bricks walls.

CONCLUSIONS:
Good corrolations between the predicted and the measured values of settlement of Zamalek tower were obtained. The comparison of the sattlement of Zamalek tower with other results from literature is given in Fig. (4) and indicate that the atount of settlement is normal according to the group size. It is recommended to use settlement joints between different parts of different loads in the same building and to construct the heaviest first, then the medium, and at last the lighter part. Otherwise to use about the same pile group size under columns.

REFERENCES:

1. Bahloul M. (19e3). Settlement of pile groups in sand. Bul. Fac. of Enrg. Mansoura.
2. Skempton, Yassin and Gibson (1953). Theorie de la force portante des pieux sols et fon. No. 13.
3. Berezantsev, Khristoforov and Golubkov (1961). Load bearing capacity and deformation of piled foundation 5th I.C.S.M.F.E. Paris 1961. Vol. 2. pp. II. 15.
4. Vesic. A.S. (1975). Principles of pile foundation design duke University series N. 38.
5. Eahloul (19e2). Settlement of Zamalek tower. Contract report.

Fig. (1-a)

$$
\text { C. } 4 \text { in. M. BAHLOUL }
$$

Fig.(1m): General noil profile.

Mansoura Bulletin Vol. 10, No. 1, June 1985 0. 5

c. 6 N. M. BAHLOUL

Fig.(3): Obaerved Sett./tim.
Comparisson of predicted and observed settlement for Zamalik tower.

Part	Predicted mam.	Observed mm	Obse to Pred. ration
Tower 34	89.9	78.24	0.87
Tower 17	33.73	45.78	1.35
Office 5	24.47	28.43	1.16

Mansoura Bulletin Vol. 10, No. 1, June $1085 \quad \therefore$.

Pig. (4-a): COMPARISON OF ALL DATA ON GROUP SEITLEMENSS ZAMALIK TOWER.

Wig. (4-b): COMPARISON OY ALL DATA ON GROUP SETMLEMENMS* ZAMALIK TOWER.

OWRER - COOPERATIVE - 10th OR RAMADAN PILING COMPANY ~ ABICON LOCATION - Tower No. 1 PILE No. 40

PILE DIAHETER $=82$ OA STARTING DATE TEST No. -2END OF TEST

WOREING LOAD -185.0 TONS TEST LOAD - $185.0 \times 1 / 2$
$=277.5$ TONS.

Fig 5.b.

```
C. 10 M. M. BAHLOUL
```


APPENDIX

Calculations

Study of behavior of 820 mm piles and load 200 t
length $H=15 \mathrm{~m}, \mathrm{D}=0,82 \mathrm{~m}, \mathrm{P}=200 \mathrm{t}$
Bearing capacity analysis
$Q p=\frac{1 / 3 \mathrm{Kg} / \mathrm{cm} N \mathrm{ApCm}^{2}}{1000}=\mathrm{t}=1 / 3 \times 4 \times 25 \times 82,82 \overline{9}=175 \mathrm{t}$
$Q s=\frac{1 / 30.2 \times 12 \times \times 82 \times 1500}{1000}=30 \mathrm{t}$
total load $=175+30=2050 . K$
$q_{0}=0,8 \times 15 \times 3003600 \mathrm{t} / \mathrm{m}^{2}$ (Meyerhof 1953).
Settlement analysis:

1. $w s=(170000+0.5 \times 30000)$

2. $W p p=\frac{0.14 \times 170}{0.82 \times 3600} \times 1000=0.06 \mathrm{~mm}$.
3. $W p s=\frac{2,25 \times 30}{15 \times 3600} \times 1000=1,25 \mathrm{~mm}$.

Total settlement $=11,94 \mathrm{mr}$.
Study of behavior of 020 mm pile, P 185 t .
Length $H=13.5 \mathrm{~m} \quad \mathrm{D}=82 \mathrm{~cm}$ Load $=185 \mathrm{t}$,
Bearing capacity analysis:
Qp $1 / 3 \times 4 \times \mathrm{N} \times \mathrm{Ap}=155 \mathrm{t}$.
Qs $1 / 30002 \mathrm{Ns}$ As $=27 \mathrm{t}$.
Q total $=182 \mathrm{t} \ldots$......
$q_{0}=0.8 \times 13 \times 300=3120 \mathrm{t} / \mathrm{m}^{2} \ldots$ (Meyerhof 1953).
Settlement analysis:

1. $\mathrm{Ws}=\frac{(150000+0.5 \times 35000) 1300}{77 \times \frac{82 \times 82}{4} \times 200000}=2.13 \mathrm{~mm}$.
2. Wpp $=\frac{0.14 \times 155}{0.82 \times 3120}=8.47 \mathrm{~mm}$.

Mansoura Bulletin Vol. 10, No. 1, June 1985
3. $W p s=\frac{2.25 \times 27}{1.35 \times 3120}=1.44 \mathrm{~mm}$,

Total settlement $=12.04 \mathrm{~mm}$.
Study of behavior of 620 mm pile. P $110 \mathrm{t}, \mathrm{H} 13 \mathrm{~mm}$

1. Bearing capecity analysis:

$$
\begin{aligned}
& Q P=88 \mathrm{t} \\
& Q=25 \mathrm{t} \\
& Q \text { total }=113 \mathrm{t} \ldots . \ldots . \mathrm{K} . \\
& Q_{D}=3120 \mathrm{t} / \mathrm{m}^{2}
\end{aligned}
$$

2. Settlement analysis:
$\omega \mathrm{s}=2.16 \mathrm{~mm}$.
$W p p=6.37 \mathrm{~mm}$.
Wps $=1.33 \mathrm{~mm}$.
Total $=9.86 \mathrm{~mm}$.
Predicted settlement of piles under the 5 stories office:
Max, settlement under the caps of 2,3 piles as follows:
Width of 2.3 piles $1 \times 2=2 \mathrm{~m}$.
Predicted settlement Vesic $=9.86 \frac{2}{.62}=17,71 \mathrm{~mm}$.

$$
\begin{aligned}
& \text { Bahloul }=9.86 \frac{2}{.62} \quad \frac{1}{7}=25.3 \mathrm{~mm} \\
& \text { Skempton }=9.86 \times 4=39.44 \mathrm{~mm} \\
& \text { Berezantsev }=9.86 \frac{3.83}{2.44}=15.40
\end{aligned}
$$

mean values of predicted settlement under the office part in order of 24.47 mm .
Predicted settlement under the 17 tower:
A) Max. settlement under the cap of 8 plles es follows: width of 3 plle rows $2 \times 2=4 \mathrm{~m}$ Pradicted seftlement according to Vesic $=12.04 \frac{4}{.82}=26.59 \mathrm{~mm}$.

Max. mean value $=39.35$ mm*

C. 12 M. M. BAHLOUL

B) Settlement under the caps of 3 piles as follows:

Predicted Veisc $=18.80 \mathrm{~mm}$

* Bahloul $=26.86 \mathrm{~mm}$
* Skemptonc 48.16 mm
" Berezantsev= 18.64 mm
Min. mean value 28.11 mm.
Mean value of All Tower $17=33.73 \mathrm{~mm}$.
Predicted settlement of pile groups
Under the raft of 34 tower:
Width of 12 piles rows gives $\mathrm{B}=2 \times 11=22 \mathrm{~m}$
Predicted settlement according to Vesic $=\frac{22}{.82} \times 11.94=62.36 \mathrm{~mm}$

$$
\begin{array}{llll}
* & * & * \text { Bahloul }=\frac{22}{.82} \times \frac{11.94}{0.7}=89 \mathrm{~mm} \\
* & * & = & * \text { Skemton }=144 \mathrm{~mm} . \\
= & \cdots & \cdots \text { Berezantsev }=\frac{26.21}{4.91}=64.27 \mathrm{~mm}
\end{array}
$$

The mean value of predicted settlement 89.9 mm .
Predicted differential settlement under the structure:
The max, differential settlement will be between the tower 34 and the office part and will be $89.9-24.47=65.43 \mathrm{~mm}$.

The min. differential set-1ement will be between the tower 17 and the office part and will be in order of $33.73-24.47=9.26 \mathrm{~mm}$. The intermediat differential settlement will be between the tower 34 and tower 17 and will be in order of 56.17 mm .

